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LINEAR REGRESSION TO A LOWER ORDER MODEL:

EFFECTS AND IMPLICATIONS

INTRODUCTION

Linear regression is used extensively in the fields of science,
engineering, and business. In many instances, because the data-generating
process can be complex, exhibit random effects, or be unknown, the regression
model used only approximates the actual process model. For these reasons,
regression models of reduced order are often used. Such models are designed
to be as accurate as necessary for their intended application without
retaining unnecessary and noise-sensitive, higher order terms.

When regression is used for noise suppression, the order of the
regression model required can be a function of the noise level encountered.
Under high-noise conditions, the errors incurred by using a reduced-order
regression model can be negligible when compared with the noise uncertainty.
Under low-noise conditions, however, the errors can become significant.

When the regression parameters are to be related to process state
parameters for subsequent processing, it is very important that the
relationship be properly formed. Use of a reduced-order regression model can
produce unexpected biases, which can be accounted for in the state relation if
interpreted properly. Such a problem was encountered when hierarchical
processing was applied to the contact motion analysis problem. In this
application, a bearing sequence, which is related to the state by means of the
arctangent function, was characterized by a second-order regression model.
When relating the regression coefficients to the state parameters, the bias
resulting from the nonzero derivatives of the arctangent function proved
significant under low-noise conditions. Application of the analysis presented
in this report allowed for bias compensation and the concomitant improvement
in estimator performance.

This report presents a brief review of linear regression and an analysis
of the effects of using a reduced-order regression model. In addition, a
parallel analysis using the Householder transformation, which provides a
convenient computational scheme for bias compensation, is discussed.



LEAST-SQUARES REGRESSiON

A process of some fixed order can be represented by a finite Taylor
series about a chosen point. If noise-free measurements are available, the
Taylor series coefficients can be calculated exactly provided the number of
measurements is at least equal to the order of the process. In this case, the
system of measurement equations, with the Taylor series coefficients as
unknowns, forms a complete set of linear equations. When the number of
measurements is greater than the order of the process, the system is over
determined, and redundant equations can be ignored. The problem becomes more
complex when measurement noise is present.

The most common method of solving an overdetermined system of equations
in the presence of noise is to use the method of least squares (references I
and 2). Consider the system of equations

Ax = b, (1)

where x is the n x 1 vector of unknown coefficients, A is the m x n system
matrix (m > n) created from the samples of the independent variable, and b is
the m x I measurement vector. The least-squares solution is derived by first
introducing the m x I error vector

e = b - Ax. (2)

The objective in the least-squares technique is to minimize the squared
magnitude of the error vector, so that

l ell 2 = eTe = (b - Ax)T(b - Ax), (3)

giving the least-squares solution

x = (ATA)-lATb = A#b. (4)

The matrix A# = (ATA)-lAT, which is the orthogonal projection matrix that
projects an arbitrary vector into the subspace spanned by Ax, is called the
generalized or pseudoinverse of the matrix A (references I and 2).

In the problem at hand, the rows of the matrix equation (Ax = b) are
simply samples of the Taylor series representation, which results in the
matrix A assuming a distinct form. To illustrate the form cf A, consider the
nth order Taylor series polynomial about the point to given by

b(t) x0  . xl(t - to ) + x2(t - to) 2  + ... + Xn(t - to)n, (5)

where

x0  b(t0),

x i  bi(t0)/('L)', i > 0, (6)

with bi(t) being the ith derivative of b(t). With no loss in generality,
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ta 0 may be selected. For m samples of the function taken at points

tl,t 2 ,. .. ,tm, the resulting set of equations is

b(tj) = xQ + x 1 tI + x2t12 +... + Xnt1 n,

b(t2) = x0 +. xlt2 +. x2t2 2 + . + xnt 2 n, (7)

b(tm) = xO+ xltm + x2t.2 +. + xntm n,

which may be written in the form of equation (1) with matrix A defined as

1 n1
2 t . tn (8

A: 2 2 2

L1 t m m ... mj

and

b = fb(tl),b(t2), --. b~,)

An estimate of the nth order Taylor series coefficients x based on m
noisy measurement samples Yi = b(ti) + wi, with wi being the measurement
noise, may be obtained by solving the least-squares equation (4) using the
system matrix of equation (8) and b = [yl,Y2.....mi

The matrix A takes a particularly convenient form when the measurement
points ti are uniformly spaced and (again, with no loss in generality) are
symmetrical about the point to = 0: hence, tk = k.~t for k = (-m/2, m/2).
(here, m is considered to be an even number for simplicity; simiar results
hold for m odd.) Now, the matrix A has the form

2
1 (-m/2)at [(-m/2)atI ... t(+/2),t~n

and ATA is given by

E(iAt)

A: (10)
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whci,. the siumation is over i -m!2 to mn/2. Again, art estimate 'of the
cr'effiei%.nt vector x may he obtained by solving the 1-asit-. quares equation
(4;. E!:vimva.on using the fea~t..suuares cir'rericon is nothing new; wha is of

xntre.t n~reis Iv imlct o ursirig A mo-del order for estimiation i .at is
lkwer thaa the actual pro'zess modei order.

ESTIKATTON TO A LvWFR ORDUP MODEL

When the prociss of inierest i.s ch:.'iacterized bya Taylor ser Ies, for
mrny. practi'-al apjA icationrs. the higher rxder terues in the series are of
slguif'c Qtly lower m~agnitude when coixpied with the Lower orck~r ttrars. It is
often the cas., !Jiit th-1 noise' level will result In estimat ion errors thait are
ccmparabie --ith the manitude af thcse higher order items. For this reason.
it is ol'tei tiesir"-bl*2 to widit tuie s-ste.x %vitb a lower of-der, provid;--te a more
sclust estima -ion u'; the cU* ired c~aciicears. Alic, in some i a st apces , it
way be poGS.Ll,'o~r the Tayior aeries coeffici:ets of th~e higher order er~i
to be expr-essed a: functr)n- of the lower orider coefficients. Unner stlch

cxidi~ons t'.,'ot- order terms compi tely die'crilbi the system dyanw~cs,
: ver d-,o-gh tilere ai~y ce n~onzero, -higher orcle- tevirs. ';ie again, it maY be
'k-siravle to !szimate thne coeft'i Ients f'or :;ic lowest order model to
'; ti5f3ctorily descrioe ti-te system drat'j. However, czre must be taken when
Iine-prcting 0th resu'&tl-g coefficilint esiimates. because the basis fu-nctiors
,,J ihe Tavlc'i series are no, crthogona!. The intetpretation becomes

:ti~i~yiwvoitar~t -NhZan the Lt cfficient estimates area t, ) e corrpar~d with
pr~dict'lons frOtll a stattL pa:-aimt~tr mouel.

lo illstrte the effects of )'!,ting te a lower ordei , consider the
following procesc described b) zhe foairth-crder modei-

Thei. considi-r the' fol iowng case A, ere the aestimationi is performed for a

%.)del of the 3ecund order:

Y(C) =xo + x1t -X)!2. (12)

Again, for siinpii,:ity, consider a symmuetric time interval, whlch has been
uniformly sampled. The im~pact of the -educed-ordcr estimat in can bL
evaluatedl by solving the least-squares equations under noise-free- conditions.
Under these conditions, the measurements arc simply rkoise-free samples of the
process function, which is ihown as

qO ql(-mI2)At + +. 4 (M2)t

b qO + ql(Q),6t + + q 4 [(O)ati 4  .(13)

4 q0 +q 1(m/2)at % (i/)t 4



Th9iis may he written as b w Q where Q is the (m x 5) matrix in the form of

equation (9) and q is the vector of coefficients from equation (11), such that

q - [q0,qj,r7,q3,q4J. (14)

Fro. equationf (9) and (12), it may be seen that the matrix A is given by

- (O)at [(O)4t]2 (15)I:

I:
I (u/2)At ... [(m/2)At]

Fro eqation (10), ATA takes the form

m+I 0 2 (4t E 2 )

2A2 m/2 2
ATA 0 2(&t) E (1) 0 (16)

i=1

2( m/2 4 m/2 4
2 (i) 0 2(At) E (i)Li=l i=1

and the product ATb takes the form

ATb - ATQq, (17)

r n+ 0m/2 m/2 4

m+l 0 2(4t)" ( i)'" 0 2(6t) E 4i)
i=1 i=1

m/2

ATQ 0 2W:)2 1 (i) 2  0 2.,t~i E (1)4 0 (8)

m/2 m/2 nr2
4 2 46 62(8t) 4  (i) 0 ,!At) 1 0 2(At) E (i)
i=l izi i=1

The sun's r. equations (16) and (13) may be rcplaced by 'heir- closvd-form
cquivalents and for largt m approxi.mated b- the most sign<i'icant term. The
resuiting approximatio.; folloti, i.e.,
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0 At)WY312

ATA 0 (At) 2.3  0 (19)12

(at)23 (t) 4 5

12 0 80

m 0 (At)2M3 0 (At 4m5

ATQ A0 At )23 0 80 (20)12 80

At)2m (At)

2312 80 448

and

1 0 0 0 -3(4t) 4,4
560

(ATA)-IATQ 0 1 0 3(at) 2 2  0 (21)
202

0 u 1 0 at14 

From the resulting least-squares solution for x

x= (ATA)-1ATQq, (22)

it may be seen that the estimates of the components of x are not exactly equal
to the corresponding components of q. As an example, look at the estimate of
xO , such that

Xo = q0 [3 (4t lain (23
- 560J q4 " (23)

The use of a reduced-order estimation model produces a bias on the Taylor
series coefficient estimates.

To evaluate whether this biasing effect is significant, one must look at
its magnitude relative to the estimated noise variance. From the Cramer-Rao
inequality, it may be seen that the covariance of an unbiased estimator is
bounded below by the inverse of the Fisher information matrix (reference 2).
While xO is a biased estimate of qo, it is an unbiased estimate of the
parameter for which the right-hand side of equation (23) is an approximation.
This is also the case for the other elements of the vector x. The inverse of
the Fisier information matrix, aw2(ATA)-1 for homoskedastic noise with
variance ow2 (reference 2), is a lower bound to the covariance on x, so that
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9 0 -15
M (at) 2a3

w2 (ATA) 1 =a 2  0 12 0 (24)
- = (A2t)2M 3

-15 18023 0
(t) 2m3 (At) m5

It may be seen that axO2 > (9/4m)aw2 and, from equation (23). the bias error
due to the reduced-order fit is

e [3(t )4m4q(25)

The bias effect becomes significant when the corresponding standard deviation
is on the order of the bias magnitude

( 4t) 49/2q4

a (26)
w 280

This gives the noise level or, conversely, the magntude of the process
parameter q4, for which the biasing effect of using a iowr order model
becomes significant.

To illustrate that the use of a reduced-order modei may be advantageous
from a minimum variance perspective, look at the Cramer-Rao bound for a
first-order model, when

a 2(ATA)- 2 (/) 12 127)
(At) 2 3

It may be seen that the variance on the x0 parameter for a first-order model
is four-ninths of the corresponding second-order model estimate. This
illustrates the fact that, while using a reduced-order model may introduce a
bias, it can provide an estimate with significantly lower variance. In
situations where the bias can be accounted for. or under relatively high-noise
conditions, it is most dvantageous to use a model of minimal order.

BIAS COMPENSATION VIA THE HOUSEHOLDER TRANSFORMATION

Use of the pseudoinverse for the solution to the normal equations is
convenien: for the derivation of an analytic expression for noise-free
regression coefficients. However, the analysis uses the assumption of a
constant data rate and is further simplified by using approximate expressions
for the sums involved. For large or poorly conditioned systems, the matrix
inversion required for the pseudoinverse solution can be computationally
intensive and problematical (reference 2). To avoid these difficulties,
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numerical techniques have been developed that eliminate the need for an
explicit matrix inversion. One technique commonly employed is the Householder
transformation (references 2 and 3).

The Householder tranformation is a numercal technique used to effect an
orthogonal transformation on the regression model. Without delving into
details of the Householder procedure, the results of interest may be obtained
by looking at the transformation matrix to which it effectively applies. The
Householder matrix H transforms the regression model into the upper triangular
form

HA S] Hb, (28)

where Sx is an n x n upper triangular matrix, Ex is an n x I vector, and te is
an (m - n) x I vector. Using the orthogonal property of the Householder matrix
(HTH I). the least-squares criterion may be rewritten as

Hell 2 = eT e = (b - Ax)T(b - Ax),

= (b - AX)THTH(b - Ax).

. (Hb - HAx)T(lb - HAx),

orx e2x T [] .] - ]x, 29)

or e 0 e 0

Ile11 2 = ( - Sxx)T(Ex - Sxx) + eT e.(

The second term in equation (3C) is independent of x: hence, the least-squares
solution is found by choosing the x that causes the first term to vanish, i.e.,

X = Sx-lx. (31)

Because Sx is an upper triangular matrix, the inversion involved in equation
(31) is straightforward.

Agair.. the order of the process model is considered to be greater than
the regre.sion model. Under noise-free conditions, the measurement vector is
generated by b Q Qq, where the matrix Q is of the form of equation (8). and it
can be noted that

Q = [A : A], (32)

where A is the matrix for the lower order regression model and A contains the
higher order components. Applying the Householder transformation to the
resulting regression model makes the squared error

8



lel1 2 . (Hb- HAx)T(Hb -HAx),

=S X Sxq - [Sx]x T([Sx %j - Sx]

- ([Sx : SxIq - Sxx)T ([Sx : SxJq - Sxx)

+ ([0 :Selq)T 1[0 : Selq). (33)

Again, the second term is independent of x and represents the magnitude of the
squared error resulting from the use of a reduced-order regression model. The
least-squares solution is obtained by choosing x so that the first term
vanishes, i.e.,

= Sx-l[Sx : Sxlq,

= [I : Sx-lSxq. (34)

The marix in equation (34) is a general form of that found in equation (22),
with none of the approximations or assumptions of constant data rate or
symmetric interval. It is readily produced as a byproduct of the Householder
procedure and is not a function of the measurement noise.

APPLICATION TO HIERARCHICAL ESTIMATION

The results of the previous sections become particularly relevant when
the reduced-order regression is performed as the first stage in a hierarchical
estimation procedure. As such, locally estimated regression parameters serve
as "pseudomeasurements" for a second stage of estimation, which combines the
local parameters from multiple data segments to provide a global state
estimate. As srated earlier, it may be advantageous to perform a minimal-
order local estimation to minimize noise effects. When these local estimates
are used as pseudomeasurements, the global measurement model takes the form of
equation (34), i.e.,

b(e) = [I : Sx-lSxJq(e), (35)

where b(e) is the predicted pseudomeasurement that corresponds to the solution
0 x provided by the local regression. The vector q(8) comprises the Taylor

series coefficients based on the global state estimate 0. Use of the
measurement model of equation (35) limits the modeling bias errors to a value
determined by the order to which q(E) is extended, while retaining the noise
characteristics associated with the regression to the order of b(e).

These developments were applied to the nonlinear state estimation problem
using data segmentation and compression (reference 4). Here, bearing data,
which are related to the state through the arctangent function, are character-
ized on a segment by a second-order polynomial. For each segment, the result-
'ng estimates are used as t ! input to a second stage of processing that

9



performs the global nonlinear state estimation. For the problem at hand, only
bearing and its first two derivatives i13,I3,t 3) are independent, and all higher
time derivatives of bearing can be written in terms of , The use of a
second-order model to characterize the bearing curve results in biased
estimates of the Taylor series coefficients due to the nonzero higher
derivatives. However, when calculating the predicted polynomial coefficients
b(O) from the current state estimate e, it is possible to use the correction
terms of equation (35) by simply using the predicted value of q(O). That is,
the components of q through q4 are retained (corresponding to bearing time
derivatives up to (4)). This results in a bias compensation that is accurate
to the fourth order, while the regression is carried to only a second-order
model and, hence, has lower variance than a fourth-order regression. The
resulting estimation algorithm performs well under both high-noise and
low-noise conditions.

SUMMARY

Because the actual data-gathering process can be complex, exhibit random
effects, or be unknown, it is often useful to implement a minimal-order model
when estimating process parameters. In cases where robustness and accuracy
are of interest and the estimation algorithm must operate under both
high-noise and low-noise conditions, it may be necessary to account for the
biasing effects of higher order terms on the estimates of lower order
parameters. While the biasing can be unnoticeable under high-noise conditions
or for short observation intervals, it can account for a significant
percentage of the errors under low noise or for long observation intervals.
This circumstance has been illustrated for the case of a linear-regression
model in additive Gaussian noise. The resulting analysis proved useful in
bias compensation for a hierarchical estimation technique.
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